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Abstract: 
 
Energy loss due to rolling resistance of rubber conveyor belts is a major factor in 
conveyor design and its determination is dependent on the properties of the rubber 
compound of the belt backing.   Vulcanized, carbon black-filled backing compounds 
typically exhibit the so-called Payne effect, where, under cyclic loading, there is a 
dependence of the storage and loss moduli on the amplitude of the strain.  In effect, the 
stress-strain response of these compounds is highly nonlinear.  Yet in belt system design 
the indentation loss calculation is often based on the uniform strain, linear properties. In 
this study we use the measured properties of a typical backing material, including strain 
amplitude dependent data, and couple a simple one dimensional stress/strain material 
model with simple calculation methods of the indentation resistance to show that the 
indentation loss factor can vary considerably with the strain amplitude impressed upon 
the backing under typical design loads. 
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1. Introduction 

Modern conveyor designs rely on predictive and analytical models of the rolling 
resistance due to indentation of idlers into the belt backing or cover material.  A typical 
belt layup includes two rubber covers with a cord ply or steel cable carcass sandwiched 
between, with the top cover designed to resist wear and abrasion from the carried 
materials and the bottom to minimize rolling resistance over the belt system idlers.  The 
indentation of the bottom cover by idlers is a primary source of power loss, and hence an 
important factor in the design of the system. 

The particular characteristic of rubber compounds, especially those with carbon 
black fillers, that produces a nonlinear stress-strain behavior, even for relatively small 
strains, is called the Payne effect.  This phenomenon refers to a dependence of the 
viscoelastic moduli on applied cyclic strain amplitude, where it is observed that for 
strains above about 0.1%, the storage modulus decreases as the loss modulus increases 
(cf. refs. [1-8]).  As strains experienced by belt covers, even under modest loads, can 
routinely exceed 0.1%, and both the storage and loss moduli are factors in the indentation 
loss prediction, it is important to account for the effect of strain amplitude in any 
predictive model. 

In this study we use the measured viscoelastic properties of a typical backing 
rubber material and fit that data to an established strain amplitude dependent constitutive 
model.  The constitutive model is then incorporated into a one dimensional model of the 
indentation resistance to show that the indentation loss factor depends significantly on the 
strain levels and hence the loads carried by the belt. 
 
2. Rubber properties and material characterization 

Since characterization of nonlinear viscoelastic materials is an extension of the 
linear theory, we first review the linear methodology.  As dissipative materials are 
inherently time dependent, testing in a cyclic mode at various frequencies is a natural 
way to capture the time dependence through Fourier analysis.  For a sinusoidal strain 
history of the form ( )tωεε sin0= , where ω  is the angular frequency and 0ε  the 
amplitude, after an initial transitory state the stress follows the strain in frequency, but at 
a delayed phase or angle δ .  For a linear viscoelastic material, the one-dimensional 
stress/strain relationship is of the form, 

 
 ( ) ( ) ( )δωεωωσ += tE sin0

*  (1) 
   

where σ  denotes the stress, ( ) ( ) ( )22* ωωω EEE ′′+′= is the magnitude of the complex 
modulus with real and imaginary components ( )ωE ′  and ( )ωE ′′ , called the storage and 
loss moduli, respectively.  For viscoelastic materials undergoing harmonic deformation, 
the loss tangent is determined by ( ) EE ′′′= /tan δ  and is the phase angle of stress 
following strain. 

 By testing over a wide temperature range but limited frequencies, the 
superposition principle (cf. Weinman, et. al. [9] or Ferry [10]) of linear viscoelasticity, 
allows extrapolation to frequencies or load rates considerably beyond those possible in 



DRAFT 

T. J. Rudolphi 3 9/21/2011 

testing.  According to this principle, if T  denotes temperature and 0T  a reference 
temperature, then a material property at time t  and temperature T  is equivalent to that at 
time taT  and temperature 0T , where Ta  is a shift parameter in time so that 

( )0,TTaa TT = .  A commonly used expression for Ta , applicable to amorphous materials 
such as rubbers, at temperatures above the glass transition temperature, due to Williams, 
Landel and Ferry [11] and referred to as the WLF equation, is the logarithmic form, 

 

 ( ) ( )
( )02

01log
TTC

TTC
aT −+

−
=  (2) 

 
where 1C  and 2C  are constants determined empirically from data.  For data taken from 
cyclical or frequency controlled strain experiments, an empirical representation of the 
shift parameter Ta  may be determined by overlaying, through shifts in the frequency, the 
temperature dependent modulus data onto a “master” curve and software to do this 
shifting is usually a part of the DMA instrumentation or can be written according to 
various curve fitting or error minimization algorithms. 

Various arrangements of linear mechanical elements of springs and dashpots are 
classically used to fit the viscoelastic behavior of eqn. (1).  The simple Maxwell model 
consists of a single spring (solid) in parallel with another spring and a dashpot (fluid).  A 
generalization of this, called a generalized Maxwell, or Weichert model [9], consists of 
many such springs and dashpots in parallel with one spring.  For such an arrangement of 
N  elements, the storage and loss moduli of eqn. (1) are related to the mechanical 
element values by the Prony series, 
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where iE  and iη  are the discrete spring and dashpot constants and iii Eητ =  are the 
periods of the various spring/dashpot elements.  The iE  values, as a set, are also called 
the spectrum, or spectral moduli, of the storage and loss moduli of eqn. (3), respectively. 

As a shear mode of deformation is often used in testing, the equivalent shear 
storage modulus ( )ωG′  and loss modulus ( )ωG ′′  are convenient to use, instead of the 
tensile moduli of eqn. (3), with ( ) ( ) 3ωω EG ′=′  and ( ) ( ) 3ωω EG ′′=′′ , assuming 
incompressibility of the rubber. 

A computer program, based on least square curve fitting for shifting and 
overlaying test data at various temperatures, was written to determine the Ta  vs. 
temperature relationship.  Also, a least squares fitting process determines constants 1C  
and 2C  of eqn. (2) and a least square, non-negative fitting process determines the spectral 
values of the moduli of eqn. (3).  Here we determined the spectrum by overlaying the 
storage modulus with spectral values placed at half-decade increments in the frequency 
space, which was sufficient to accurately overlay the data.  For a truly linear viscoelastic 
material, the spectral values as determined from the storage modulus should also 
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reproduce the loss modulus through the second of eqns. (3), and for the low strain data, 
this is the case as observed below. 

For dissipative materials like rubber compounds, the macro-mechanical properties 
– storage and loss moduli, including the effect of strain – are usually measured 
dynamically with a DMA (Dynamic Mechanical Analyzer).  The dynamic moduli are 
usually determined by testing in a one-dimensional, strain-controlled mode, like uniaxial 
tension, pure bending or pure shear.  Typical tests are performed in a cyclic mode, 
whether in tension, bending or shear, and consisted of sweeps through fixed frequencies 
of about rad/s1.0 to about rad/s100  and at fixed temperatures ranging from about 

Co70− to about Co70+ .  The pure shear mode is accomplished by twisting a relatively 
thin and narrow specimen and is generally preferable to tensile or bending modes so as to 
minimize inertial effects at higher frequencies.  This twisting mode of testing also has the 
advantage of producing a homogeneous strain field within the specimen, which is very 
important for testing at higher strain levels where all elements of the test cycle through 
the same strain levels.  This would not be the case for bending modes, where the strain 
level in a bending cycle would vary with distance from the neutral axis. 

For this study, a specimen (approximately 40x12.5x7 mm) of the rubber material 
taken from the backing of a typical belt material was sent to and tested by an independent 
laboratory [9] using a Rheometrics Scientific RDSII instrument to determine the low 
strain and higher strain viscoelastic properties in a twisting, pure shear mode.  At low 
strain levels, testing was performed over a temperature range of Co70−  to Co75+  in 
about 10 degree increments and over frequencies of 0178.0  to rad/s100 .  Tests were 
also performed at various strain levels up to %6  at five temperatures and at a fixed 
frequency of rad/s10  to characterize the non-linear, strain dependent behavior. 

Figure 1 shows the data of the test for the low strain moduli as taken through 
harmonic frequency sweeps at fixed temperatures and at strains well below the non-linear 
threshold (approximately 0.02%).  Tests were also made at higher strains (up to 6%) to 
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determine the effective moduli at these higher strain levels as will be discussed in Sec. 3. 
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Fig. 1: Storage and loss moduli data for temperatures and frequencies tested.             
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Figures 2 and 3 show the master curves and shift parameter Ta  for the rubber 

tested and developed at a reference temperature of Co0 , which is where Ta  equals 1 of 
Figure 3.  Shown also in the table of Figure 3 are the values of the WLF constants of eqn. 
(2) for this particular rubber compound. 
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Fig. 2: Master curve of the shifted data and Prony series (spectral) fit to the shifted data.
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Fig. 3: Frequency-temperature shift coefficient aT and WLF curve fit.                            
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In addition to the moduli and the shift factor associated with the master curves, an 

important property directly related to the energy lost in a deformation cycle is the loss 
tangent ( ) GGEE ′′′=′′′= //tan δ , which for this material, is readily determined from 
Figure 2 and is shown in Figure 4 as a function of frequency.  We observe that for this 
material there is a lower plateau of ( ) 1.0tan ≈δ  at the lower frequency range (higher 
temperatures) and peaks at nearly ( ) 5.0tan ≈δ  for a frequency of about rad/s108 .  As 
the rolling resistance of the belt backing over an idler is directly related to the energy 
absorbed by the backing material in the indentation deformation process, the loss tangent 
relates directly to the rolling resistance.  Thus depending on the rate (frequency) and 
temperature, there could be as much as a fivefold variation in the indentation resistance 
for this material. 

The above ideas pertain to a material characterized as a linear viscoelastic one, 
but can also form the basis for a nonlinear material by determination of approximately 
equivalent moduli and loss tangent, as discussed in the following section. 
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Fig. 4: Loss tangent and spectral representation of the data.                                       
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3. Strain Dependence of the Viscoelastic Moduli 

Estimated compression strain levels into the backing material due to indentation 
can exceed 5 to 10% (Rudolphi [13]) and, at these strain levels, carbon black-filled 
rubber compounds are known to exhibit the nonlinear characteristic called the Payne 
effect, where the storage modulus decreases significantly with strain amplitude in cyclic, 
strain applied tests.  As such, the linear relationship between stress and strain that defines 
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the moduli in eqns. (1) and (3) is no longer strictly applicable.  Also, in rubber 
compounds, the loss modulus generally increases with strain amplitude to a maximum at 
some strain level, and then decreases back to near the low strain plateau as observed by 
Vieweg, et. al. [6,7] and Wang [6].  To accurately predict the indentation resistance, we 
must then incorporate the nonlinear effects of strain amplitude into the stress response 
into the model of rolling resistance. 

Kraus’ [14] model of the Payne effect is a nonlinear constitutive equation that has 
been successfully applied to carbon-filled rubbers, and we follow that approach here 
since it is easily incorporated into simple models of the indentation and deformation of 
rolling contact.  Kraus’ model is phenomenologically based, but the macro-mechanical 
behavior is determined by a small number of parameters that can be determined by one-
dimensional, cyclic strain tests.  A one-dimensional test requires then a testing mode that 
is homogeneous, i.e., all elements of the specimen under test must go through the same 
stress/strain cycle. 

Then, in addition to the frequency/temperature sweeps to determine the low strain 
moduli of previous section, additional tests were performed on the same material at five 
temperatures well above the glass transition temperature and at strains ranging from 
about 0.04% to 6% and all at a constant frequency - 10 rad/s.  The data (moduli) from 
those tests are shown in Figure 5 as a function of strain at the five temperatures.  As 
observed the storage modulus drops by nearly a factor of three from the low strain 
modulus to that at 6%, while the loss modulus increases slightly within that same strain 
range.  There is also the expected rise in the loss modulus at strains in the range of about 
1 to 6%.  These test results are similar to those of Vieweg, et.al.[6,7], Wang [8] or Ulmer 
[4] and for which Kraus’s model can be readily applied. 
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Fig. 5: Storage and loss moduli data at various temperatures.                                     
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A normalization of the data of Figure 5 is first determined by selection of a 
threshold or reference strain value for which the moduli plateau, which by inspection 
would be about %1.00 =γ .  Division of the moduli of each temperature curve by the 
modulus at this strain, thus defining 0G′   and 0G ′′  for each, produces Figure 6. 
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Fig. 6: Storage and loss moduli data normalized to the small strain values.                  
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On Figure 6 we observe the fairly close overlay of the temperature curves, 

especially for the storage modulus.  As such, it would not be inappropriate to presume 
that, for such materials, the moduli are nearly temperature, and therefore frequency, 
independent.  This assumption is consistent with Vieweg, et.al. [6] for carbon filled 
rubbers, and we follow it here. 

To fit the analytical model of Kraus to the data of Figure 6 we follow the notation 
and approach of Vieweg, et. al. [7] and Lion and Kardelky [15], where the nonlinear 
strain dependent moduli, deriving from Kraus’ model, are written in the form, 

 

( ) ( )
( ) m

GG
GG 2

0

0

1 γγ
γ

+

′−′
+′=′ ∞

∞ ,             ( ) ( )( )
( ) m

mGG
GG 2

0

00

1 γγ
γγ

γ
+

′′−′′
+′′=′′ ∞

∞  (4) 

 
where 0G′  and ∞′G  are the storage moduli at small strains and large strain, respectively,  
and m  is an adjustable parameter.  By these equations, the Kraus model is a four-
parameter model for each modulus, with the common parameter m .  But Drozdov and 
Dorfmann [5] observe, amongst other things regarding the parameters, that while 0G′ ,  

∞′G , etc., are fairly well predicted from experimental data in dynamics tests with fixed 
frequency, but that fitting data for the storage and loss moduli separately from eqns. (4) 
results in different values of the exponent m .  They also observe that in fitting carbon-
filled rubber data to the storage modulus results in a value of the exponent 6.0≈m .  
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Thus in the fitting of these equations to the data of Figure 6 we allow a different m  for 
each modulus. 

Also, to fit the normalized data of Figure 6, we divide eqns. (4) by the low strain 
values 0G′  and 0G ′′   and fit the data to equations of the form, 
 

( )
( ) m

BAG 2
01 γγ

γ
+

+=′ ,             ( ) ( )
( ) m

mB
AG 2

0

0

1 γγ
γγ

γ
+

+=′′  (5) 

 
where the constants A , B  and m  are determined independently for each modulus, as 
well as m .  The low, threshold strain %1.00 =γ  is taken to be apply to both equations, 
so there are only three parameters for each modulus - A , B  and m . 
 The data of Figure 6 were fit by a least squares process to eqns. (5) and Table 1 
shows the resulting parameters.  We observe that m  is approximately 6.0  as noted 
previously by Drozdov and Dorfmann [5]. 
 
 A  B  m  

Storage G′  0.1261 0.8990 0.5963 
Loss G ′′  0.9894 0.9117 1.3414 

 
Table 1: Curve fit parameters of Kraus’ model for normalized storage and loss moduli 
 
Figure 7 shows the analytical curve fits (red solid curves) of eqns. (5) for each modulus, 
overlaid with the data of Figure 6. 
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Fig. 7: Normalized storage and loss moduli with curve fits.                                          
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The parameter values of Table 1, together with eqns. (5) - (7) and (1) – (3) then constitute 
a complete one dimensional constitutive model for the material that includes temperature, 
rate (frequency) and strain level effects.  
 We also observe from Figure 7 that the storage modulus decreases to about one 
third of its low strain value at strains of about 6%.  As will be seen in the following 
sections, this is a very important factor in indentation resistance. 
 Also, from a theoretical standpoint, at higher strain levels the assumption of linear 
viscoelasticity loses applicability and the characterization of material with parameters as 
above no longer applies.  However, the above model for strain amplitude dependence 
does assume that, at higher strain levels, the material moduli are scaled up from the low 
strain level values according to Figure 7.  In other words, at higher strain levels, the 
material is assumed to be a linear viscoelastic material with moduli determined from the 
values measured at low strain levels. 
 As a test of how well this scaling holds for higher strains, the same material was 
tested at a frequency of rad/sec.10  and at various strain amplitudes, recording the stress 
and strain values at 100  points on each cycle of deformation.  Figure 8 shows the results 
of this test at two strain amplitudes; a low and assumed to be linear strain of %1.0  (green 
loop) and a higher, and noticeably nonlinear strain of %2.3  (blue loop).  At the lower 
strain level (green) the shape is elliptical while at the higher strain (blue), the Lissajous 
loop is asymmetric. 
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Also shown in Figure 8 (red) is the strain corrected loop, as determined by the 

strain correction modification of the moduli according to Kraus’ model.  For this loop, 
the strain correction factors applied to the modulus G′  is 427.0  and for G ′′  is 285.1 , and 
which change the loss tangent ( ) GG ′′′= /tan δ  from 180.0  at low strain to 540.0  at high 
strains; a factor of 0.3 .  Thus by multiplication of the low strain moduli by these 
amounts, respectively, and assuming a strain amplitude of %2.3 , the green loop becomes 
the red loop.  In principle, if the material were ideally linear viscoelastic, the red and blue 
loops would coincide and they would both be scaled up versions of the low stain (green) 
path with the same orientation of the axes of the ellipse. 

Finally then, by Kraus’ model, or the strain correction methodology used here, 
any strain corrected loop will remain elliptical, i.e., the material will be characterized as 
linear viscoelastic, but with alternate moduli.  Since the energy dissipated per unit 
volume in a harmonic cycle of deformation of a viscoelastic material equals the area 
enclosed in the stress vs. strain graph, it is evident that this non-linear strain model is an 
approximation and may somewhat overestimate the energy dissipation. 
 
4. Indentation deformation and resistance models 
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Analytical and computational models of rolling resistance due to indentation of 
the belt backing by idlers have been developed and, for design purposes, the influence of 
the main parameters such as idler diameter, carry weight, backing thickness and rubber 
properties of the backing have been well identified with simple analytical approaches.  
Simple models that treat the belt covering as a viscoelastic layer on a rigid base are that 
of Jonkers [16], Spaans [17] or Lodewijks [18].  A more rigorous approach, with the 
backing modeled as a full two-dimensional half-space, are those of May, et.al. [19], 
Hunter [20], Morland [21] or Goodier and Loutzenheiser [22].  All these models assume 
a linear viscoelastic material of the backing, and as shown by Lodewijks [18], the two-
dimensional models provide slightly lower values of the indentation resistance for equal 
material properties and other system parameters. 

One can also take a completely computational approach to rolling contact 
problems, as developed by Lynch [24] or Batra, et.al. [25], and as applied to belt cover 
indentation by Wheeler [26], where the cover deforms as a two-dimensional medium and 
is modeled by finite elements.  The advantage of a computational approach is that a less 
restrictive deformation model is possible, such as modeling the entire belt carcass, as may 
be important for cable belts where the deformation between the steel cables also dissipate 
energy (cf. Wheeler [27]).  Conversely, recourse to computational methods at the outset 
precludes analytical results that can make parameters explicit so that parameter studies 
important for design can be time consuming and expensive. 

Experimental measurement of indentation resistance is possible, but known to be 
sensitive due to the low resistance force of efficient belt construction in laboratory setups 
or inaccessibility issues in field test. 

The advantages and disadvantages of the various deformation models of the 
indentation process, or the preferred methodology of this calculation are not the focus 
here.  We want to primarily show how the nonlinear constitutive equation affects the 
predicted indentation results.  To do this it is only important to use a method where the 
strain dependent moduli can be incorporated without invalidating the assumption of the 
model itself.  To this end we focus on the one-dimensional approaches where a simple 
one dimensional constitutive equation as derived from the test data can be merged 
directly into the indentation resistance model, as opposed to the two dimensional methods 
where the strain field produced by a rolling process would be inherently non-
homogeneous and require unique strain compensated properties at each point.  Instead we 
concentrate only on the models of Jonkers [16] and Rudolphi and Reicks [23], which is a 
direct extension of Lodewijks [18] for a multi-parameter material. 

In the case of Jonkers, the equation for the indentation resistance factor f  (ratio 
of belt resistance to vertical load, per unit belt width) is, 
 

 ( ) ( ) ( )
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2 sin14
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δδπδπ

ED
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where W  is the carry load per unit width, h  is the backing thickness, E ′  is the storage 
modulus, D  is the idler diameter and ( )δtan  is the loss tangent.  The formula (8) is 
revealing in that, apart from showing the explicit dependence of f  on the parameters W , 
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h  and D , it shows that f  is proportional to ( ) 3431tan EEE ′′′=′δ .  Thus if the storage 
modulus E ′  decreases and E ′′  increases, as for materials that exhibit the Payne effect, 
the rolling resistance will increase directly with changes in both moduli. 

The formula of Jonkers in eqn. (8) results from the modeling assumption that the 
deformation process of indentation is harmonic, i.e., that the material of the backing 
continuously cycles through a compression phase of indentation, followed immediate by 
an equal tension phase.  The indentation resistance f  derives from the energy dissipation 
of this cyclic process and is thus half the area of the ellipse of Figure 7 with the strain 
amplitude determined from equilibrium of the carry load W  with the backing stiffness, 
which requires a short iterative process to effectively determine the indentation depth of 
the idler, hence strain, for a given W .  The assumed harmonic deformation process 
overestimates the actual case, however, since for steady belt speeds and uniform distance 
between idlers, the deformation is periodic, but not harmonic cycles as assumed by 
Jonkers. 

The method of Lodewijks [18] circumvents the cyclic deformation process of 
Jonkers and directly determines the contact stress in the transient compression period of 
contact between the idler and backing.  The rolling resistance then results from direct 
calculation of the moment of that stress about the idler center, hence equivalent force 
resisting the motion of the belt.  Lodewijks developed this method for a simple three 
parameter material ( 1=N  in eqn. (3)) and thus is not well suited for realistic rubber 
materials where ( )δtan  is spread over a frequency range as in Figure 4.  Rudolphi and 
Reicks [23] generalized Lodewijks’ approach by taking the material model to be an n-
parameter Maxwell solid while retaining the same deformation assumption of the 
Winkler foundation.  Their formula for the indentation resistance coefficient can be put 
into a form similar to the Jonkers’ formula of eqn. (8), and is, 
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In these definitions, iE  is the spectral stiffness of eqn. (3), ( ) iii Eavk η=  is the wave 
numbers associated with each spectral element, v  is the belt speed, ba +  is the contact 
length and ab=ς , with a  being the contact distance ahead of the idler center and b  
that behind.  As with the Jonkers’ formula (8), the contact length, hence strain, is 
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determined by an iterative process of equilibrium, given the carry load W , with the 
stiffness of the backing.  

Formulas (8) and (9) provide two different ways to determine the indentation 
resistance, based on the belt system parameters W , R , h , v  and the material parameters 

iE  and iτ .  Both can be readily used in conjunction with eqns. (4) and (5) of Sec. 3 to 
allow for nonlinear effect of strain amplitude on the stress response of the backing 
material.  They provide somewhat different results due to inherent assumptions of each, 
but both are used in the following section as a representative way to show the effects of 
strain amplitude on the indentation resistance calculation. 

 
5. Indentation Resistance as Influenced by Strain Level 

To show the effect of strain levels on the indentation resistance, the material 
properties of the tested material and material properties of Sec. 3 are combined with the 
two methods of Sec. 4.  In the following calculation, the various belt parameters were 
taken as: m075.0=R , m00635.0=h , m/s0.5=v , C25 oT =  and we let W  range from 
50 to 4000 n/m. 

Since strain in the indentation zone is largely determined by the carry load, we 
present results as W .  Shown then in Figure 9 are the calculated values of f  vs. W  from 
both formulas (7) and (8), using both strain adjusted properties and properties based on 
small strains. 
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Fig. 9: Indentation resistance factors for small strain and strain-adjusted properties.
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As may be seen, there is a difference in the indentation resistance based on the method of 
calculation, but both are magnified similarly with respect to the load W , or strain. The 
departure from the non-strain adjusted values increases with strain levels, or load, and 
converge at lower strains.  For this particular material, there is nearly a factor of two at 
higher strain levels, i.e., the strain adjusted properties have a dramatic effect on the 
indentation resistance calculation, regardless of the methods used to make the calculation.  
Furthermore, this effect would be expected from Jonkers’ method of eqn. (8) and the 
effect of strain level on the material moduli as seen in Figure 7.  
 
6. Summary and Conclusions 

As has been long known, the storage and loss moduli of particle filled elastomers, 
such as carbon black filled rubber as is commonly used for conveyor belt backing 
material, is dependent on strain levels experienced by the material.  Large conveyor belt 
designs and applications, due to heavy carry loads, strain the backing well beyond the 
linear strain levels.  By using Kraus’ nonlinear constitutive model with measured data for 
a typical rubber and simple rolling resistance deformation models, we have shown that 
the predicted indentation resistance is highly sensitive to the material constitutive 
parameters, or strain level. 

For the particular rubber properties used in this study, which is considered a 
typical belt backing material, these results would not be unexpected, considering the 
direct dependence of the loss tangent ( )δtan  on the moduli and the strong dependence of 
the indentation rolling resistance on the loss tangent.  Hence realistic predictive methods 
for indentation prediction should include the nonlinear effects of strain, or values of 
indentation resistance, hence power required to drive the belt, could be seriously under-
predicted. 
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